Sub-riemannian geometry from intrinsic viewpoint

نویسنده

  • Marius Buliga
چکیده

Gromov proposed to extract the (differential) geometric content of a sub-riemannian space exclusively from its Carnot-Carathéodory distance. One of the most striking features of a regular sub-riemannian space is that it has at any point a metric tangent space with the algebraic structure of a Carnot group, hence a homogeneous Lie group. Siebert characterizes homogeneous Lie groups as locally compact groups admitting a contracting and continuous one-parameter group of automorphisms. Siebert result has not a metric character. In these notes I show that sub-riemannian geometry may be described by about 12 axioms, without using any a priori given differential structure, but using dilation structures instead. Dilation structures bring forth the other intrinsic ingredient, namely the dilations, thus blending Gromov metric point of view with Siebert algebraic one. MSC2000: 51K10, 53C17, 53C23

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dilatation structures in sub-riemannian geometry

Based on the notion of dilatation structure [2], we give an intrinsic treatment to sub-riemannian geometry, started in the paper [4]. Here we prove that regular sub-riemannian manifolds admit dilatation structures. From the existence of normal frames proved by Belläıche we deduce the rest of the properties of regular sub-riemannian manifolds by using the formalism of dilatation structures.

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Dilatation structures with the Radon-Nikodym property

The notion of a dilatation structure stemmed out from my efforts to understand basic results in sub-Riemannian geometry, especially the last section of the paper by Belläıche [2] and the intrinsic point of view of Gromov [5]. In these papers, as in other articles devoted to sub-Riemannian geometry, fundamental results admiting an intrinsic formulation were proved using differential geometry too...

متن کامل

Intrinsic random walks in Riemannian and sub-Riemannian geometry via volume sampling

We relate some basic constructions of stochastic analysis to differential geometry, via random walk approximations. We consider walks on both Riemannian and sub-Riemannian manifolds in which the steps consist of travel along either geodesics or integral curves associated to orthonormal frames, and we give particular attention to walks where the choice of step is influenced by a volume on the ma...

متن کامل

Dictionary Learning on Riemannian Manifolds

Existing dictionary learning algorithms rely heavily on the assumption that the data points are vectors in some Euclidean space R, and the dictionary is learned from the input data using only the vector space structure of R. However, in many applications, features and data points often belong to some Riemannian manifold with its intrinsic metric structure that is potentially important and criti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012